
— XML Content Localization and Unicode —

21st International Unicode Conference Dublin, Ireland, May 2002
Page 1

XML Content Localization and Unicode
By Ultan Ó Broin

Ultan Ó Broin is globalization analyst with Oracle Corporation’s Applications Technology
Group, based in Redwood Shores in the United States. He can be reached at
ultan.obroin@oracle.com.

Abstract

Although the eXtensible Markup Language (XML) supports any defined character set, the basis for XML
data globalization comes from the support of Unicode. In fact, UTF-8 is the default encoding for XML.

In this paper, we will examine the techniques for the internationalization and localization of XML-based
content. To provide a basis for eventual localization, we will first consider typical internationalization
requirements, the role of the Universal Character Set (which we refer to as Unicode), rendering and
presentation mechanisms and outline language related features for Ruby text, vertical text, combined text,
bi-directional text, the preservation of white space and more. Then we will examine how localization
processes are best served by XML and the emerging XML Localisation Interchange File Format (XLIFF).

Our conclusion is that the use of Unicode and XML/XLIFF is the best solution for an open, scalable
approach to the development of multilingual content for global deployment.

What we discuss in this paper is applicable to any XML-based data (software user interface strings, user
assistance material text, marketing collateral and so on). Let’s begin by looking at the building blocks of
XML internationalization – character set encoding.

Character Support in XML
Although XML can support any defined character set, the basis for XML globalization comes from its
support of the multilingual Unicode standard. This greatly simplifies internationalization and localization.
At a minimum, XML processors must support the eight-bit UTF-8 and sixteen-bit UTF-16 encodings.
Since UTF-8 is the default XML encoding and English language XML elements and attributes are
frequently the basis for content development, the choice is usually in favor of UTF-8 as it allows for a
smaller lower storage by allocating English characters one byte.

XML supports the range of Unicode character values for parsing shown here:

Char : : = #x9 | #xA | #xD | [#x20-#xD7FF] | [#xE000-#xFFFD] | [#x10000-#x10FFFF]

XML Unicode character support excludes the surrogate characters and developers should not use characters
such as those for bi-directional embedding (U+202A to U+202E), line and paragraph separators (U+2028
and U+2029) and some other defined limitations in their content. You can find more about these by
referring to the XML specification (http://www.w3.org/XML/).

Here we see the XML encoding syntax (in this case for UTF-8). The encoding attributes should be one of
the names identified by the Internet Assigned Numbers Authority (IANA):

<?xml version=”1.0” encoding=”utf-8”?>

— XML Content Localization and Unicode —

21st International Unicode Conference Dublin, Ireland, May 2002
Page 2

If UTF-16 is chosen, then the encoded files must start with either of the Byte Order Mark (or BOM) values
of 0xFEFF or 0xFFFE, which identifies the XML encoding as UTF-16 and tells the processor whether the
leading or trailing value of each multi-byte character is the most significant value. Without the BOM, the
file will be parsed as UTF-8 by XML processors.

The best solution for globalized content storage is to use normalized UTF-8 characters. If, for some reason,
you choose an encoding other then Unicode, then you may find that a character cannot be represented
directly by that encoding1. In this case, developers can use a numeric character reference (NCR). The NCR
is the decimal or hexadecimal value for the character. For example, is the hexadecimal value for
“é”. NCRs are a powerful way of providing for multilingual data migration since they can be converted to
and from UCS values directly - without the need for predefinition.

Character entities are another option for representing characters. Developers can safely use the five
character entities predefined in the XML specification (<, >, &, ' and ").
However, using further character entities can be problematic unless they are predefined in XML.
Otherwise, it is unwise to assume that every text parsing tools and browsers will properly interpret the
character entity.

Language Identification
The language of the XML content is identified with the <xml:lang> element. You must always use this
element at the top of the XML file or to indicate a change of language within a document.

The <xml:lang> element supports the use of letter codes for the language and region. For example, here
we see how Swiss documents are coded for French, German and Italian languages respectively:

<p xml:lang=“fr-CH”>Swiss French content</p>
<p xml:lang=“de-CH”>Swiss German content</p>
<p xml:lang=“it-CH”>Swiss Italian content</p>

However, developers should be very careful about requiring different languages in the same document.
Although the deployment of multilingual XML content is a very efficient way of delivering content, unless
each language segment can be individually parsed it cannot be localized easily because translation
memories are generally built on a single source-target language basis.

Bear in mind that XML processors themselves make no assumptions about what the attributes of the
<xml:lang> element mean in terms of character set or presentation of the associated data. How data is
rendered, for example, needs to be handled by the eXtensible Style Sheet Language Formatting Objects
capability (XSL-FO) or a Cascading Style Sheet.

Presentation in Different Languages
The rendering and presentation of XML content is external from the data, but still meets the typical
internationalization challenges such as fonts, reading directions and other language specific conventions.

For rendering and presentation of global content, XML requires the use of a set of predefined presentation
styles, then applied to the data using XML’s eXtensible Style Sheet Language Formatting Objects
capability (XSL-FO) or through a Cascading Style Sheet (CSS).

XSL-FO is an XML-based language used to define the formatting information in style sheets. It is designed
for the application of style information through an XML parser, and supports incremental style sheet
derivations, so it is ideal for supporting different locale and language rules with the same style sheet.

1 For example, if there is a requirement that all content is delivered in US 7 ASCII only.

— XML Content Localization and Unicode —

21st International Unicode Conference Dublin, Ireland, May 2002
Page 3

To take into account different language requirements, developers should split the same style sheet into
different parts – the first with the general presentation rules and the latter with the language-specific rules.
Style sheet entries also correctly render language conventions such as different quotation marks, list
numbering style (decimal, Greek, Hebrew, Latin, Japanese Katakana, etc.) and so on.

Bi-directional languages like Arabic and Hebrew are also supported by data rendering through XSL-FO or
CSS. In this case, the style sheet direction and unicode-bidi properties are used to specify the bi-
directional text rendering in the XML document:

<rtl>
<p xml:lang=”ar”>Right to left language text goes here</p>
</rtl>
<ltr>
<p xml:lang=”en”>Left to right direction language text goes here</p>
</ltr>

XML document with different language directionality elements

rtl, rtlquote {
Direction: rtl; unicode-bidi: embed;
}
ltr, {
Direction: ltr; unicode-bidi: embed;
}

Style sheet direction and unicode-bidi: embed properties that render the language
elements

Here we see the above bi-di code data rendered in a browser:

Rendering of Bi-di text in Internet Explorer 5.5

The unicode-bidi embedded properties provide for directional formatting codes that influence how the
display of bi-di text. These are not specific to XML, but they provide for the correct semantics for
characters that are stored logically, depending on when the text within a segment is left-to-right or right-to-
left text.

— XML Content Localization and Unicode —

21st International Unicode Conference Dublin, Ireland, May 2002
Page 4

XML has other powerful language-related features. This includes the support for Ruby text (an annotation
text used to assist in Japanese and Chinese pronunciation). This is rendered using the <ruby>, <rb> and
<rt> elements:

<h3>Example Ruby text (albeit in English)</h3>
 <p>
 <ruby>
 <rb>This is the Base Language Text Position</rb>
 <rt>This is the Ruby Language Text Position</rt>
 </ruby>
 </p>

Ruby and base text elements

Here we see the above code sample rendered in a browser:

Browser rendering of Ruby and base text elements

Vertical writing is used in Asian languages (typically in Chinese and Japanese). XML provides for the
support of this required with the writing-mode properties:

<p style="writing-mode: tb;">Example of vertical text</p>

Combined text is a Japanese layout method, where characters are required to be grouped according to rules
known as kumimoji or warichu. XML supports this requirement through XSL and CSS with the text-
combine properties:

span.kumimoji { text-combine: letters; }
span.warichu { text-combine: lines; }

The ability to preserve or override the white space delimiters in English language content is another
important language-related feature. Spaces, tabs, carriage returns and line feeds can be handled by the
xml:space element that can either have a default or preserve attribute, as required.

Unicode users must be careful not to use the UCS code points (for example the ARABIC LETTER AIN
represented by U+0369 and ZERO WIDTH SPACE represented by U+200B) to represent different forms
of characters for context shaping, since this is dependent on the rendering for the correct context and not on
the character’s storage code point

Different languages use different styles to convey the concept of emphasis. In Asian languages such as
Chinese and Japanese, this takes the form of additional marks above or below the character in question. The
font-emphasis-style and font-emphasis-position properties in XSL and CSS allow these
emphasis characters to be displayed in XML.

— XML Content Localization and Unicode —

21st International Unicode Conference Dublin, Ireland, May 2002
Page 5

Additional support can be implemented through XSL-FO and CSS for the display of language-related data
under different browsers and operating systems, including some workarounds. You can read more about
these using the references at the end of this paper.

Sorting International Content
The linguistic sorting of localized content is a challenge for any technology. The <xsl:sort/> element
provides for ascending and descending linguistic sorting sequences for global content. Content is sorted at
run-time using an XSL transformation which, when combined with a language attribute, ensures that the
order is correct for each language2.

The <xsl:number/> element in XSL allows the output of a formatted integer from XML content. This
element is mostly used in the creation of numbered information. The grouping-separator and
grouping-size attributes specify the character for numeric separators and the number of digits in each
grouping.

Date and Time Settings
Date and time information should also be stored in a manner that allows for locale independence. The best
way to do this is to use the XML schema specifications settings, which follow the values defined in the ISO
8601 standard.

These date and time values enables data to be exchanged easily between globally distributed XML
processors and tools. For example, XML supports the date time value of CCYY-MM-DDThh:mm:ss (CC
stands for the century, YY for the year, MM for the month and DD for the day). This date time information is
coded in ASCII characters and can be immediately followed by a Z to indicate Universal Time Coordinated
(UTC) or the time zone difference between local time and UTC.

Adopting a universal date and time values enables data to be exchanged easily between globally distributed
XML processors and localization tools.

XML Localization
Now let’s examine the development team requirements for the localization of XML. XML data is
independent of presentation, so it is ideal for the authoring of large amounts of information that is stored in
a database and presented to the user at run-time. In general, for successful localization of content, XML
DTDs and schema must provide for the following features:

§ First, the localizable content must be easily identifiable by an element in the XML file. In

addition, this element can be used to mark any content that should not be localized.
§ Second, localizable strings must be associated with a unique and persistent identifier of one or

more keys generated automatically by the content development. These identifiers are important as
they provide the means for an automatic and secure reuse of content by localization tools and
utilities.

§ Third, context information must be provided to allow for a more accurate localization. This
information typically consists of an element showing a string type attribute which indicates
whether the target string is a message, title, prompt and so on.

§ Fourth, any maximum length restrictions that are required for a localizable string must be
communicated to the localizer. Usually this restriction is defined as a number of bytes in the XML
content, and the localization tool enforces the restriction during localization.

§ Fifth, a note or description element must be provided, containing information for the localizer on
how the content should be localized.

2 This feature needs careful verification before deployment, and at the time of writing support for it in the
major browsers is poor. One option is to utilise the interntional sort features of your database instead.

— XML Content Localization and Unicode —

21st International Unicode Conference Dublin, Ireland, May 2002
Page 6

For example:

<OraTranslatability>
 <XlatElement Name="BusinessArea">
 <XlatID>
 <Key>Developer Key</Key>
 </XlatID>
 <XlatAttribute Name="Name" MaxLen="100" Expansion="70" Note="Mandatory">
 </XlatAttribute>
 <XlatAttribute Name="Description" MaxLen="240" Expansion="Max">
 </XlatAttribute>
</XlatElement>

Example general DTD showing key localization features

Developers should avoid the use of localizable element names or variables in XML content. Keep the
element names in the same language as the source language so the localizers can understand their intention.
Also, do not rely on localizable variables that are substituted at run-time (for example, book titles or
product names) or used to build dynamic content (for example in a document’s table of contents). These
kinds of entries cannot be localized properly.

<tableofcontents-entry id=23 field=”heading:sub-heading”>

Incorrect use of localizable variables in elements

<tableofcontents-entry id=23>
 <heading>Heading text for localization</heading>
 <subheading>Subheading text for localization</subheading>
<tableofcontents-entry>

Correct solution
Finally, the DTD or schema should be provided to the localization management group or vendor so that the
localization tools can be configured to parse the data properly.

XML Localisation Interchange File Format
Although it is possible to localize XML directly, or to develop your own DTD for that purpose, the best
way to provide for localization of XML is to use the XML Localisation Interchange File Format (or
XLIFF) DTD. XLIFF is an XML-based file format for the exchange of localization data, based on
OpenTag 1.2 and including features of TMX. It was developed by a group of localization partners
including Oracle, Novell, IBM/Lotus, Sun Microsystems, Alchemy, Berlitz, LionBridge, Moravia-IT, and
the RWS Group. XLIFF is now maintained under the aegis of the Organization for the Advancement of
Structured Information Standards (OASIS), located at http://www.oasis -open.org/.

XLIFF defines a specification for an extensible format that caters specifically for localization requirements
for any file parsable file format (RTF, HTML, RC, PSD, etc.). It allows any software publisher to produce
a single interchange format understandable by any localization service provider. It requires that the format
should be tool independent, standardized, and support the whole localization process. In this case, our
concern is how XLIFF relates to XML.

— XML Content Localization and Unicode —

21st International Unicode Conference Dublin, Ireland, May 2002
Page 7

Paul Quigley (now an independent I18N consultant) was one of the prime movers behind XLIFF while
Tools Director of Oracle Corporation's Worldwide Product Translation Group. He says “the XLIFF data
format successfully meets the goal of the separation of localization data and process, providing a focus on
automation, stopping the proliferation of internal XML formats, and turning localization into a commodity
for all players. Software publishers are freed to focus on producing international products and vendors are
freed to focus on translating without managing multiple translation tools or file formats”.

XLIFF Structure
XLIFF must be a valid XML document, declared using <!DOCTYPE xliff PUBLIC "-
//XLIFF//DTD XLIFF//EN">. The format uses a hierarchical structure of primary elements to
represent the localization data:

<header>

<body>
<group>
<trans-unit>
<source>
<target>
<alt-trans>

The header element is specially designed to support the localization process by providing metadata used by
processors and tools to identify parts of the localization process (translation, edit, linguistic QA, updating
and so on) using the phase-name and process-name properties. For example:

<header>

<phase-group>
<phase
phase-name="translationedit"
process-name="translation"
date="2002-01-12T 12:11:21Z"
/>

</phase-group>
</header>

XLIFF defines the source and target text using the <trans-unit>, <source> and <target>
elements. One important feature allows XLIFF to carry more than one translation for a source string; this is
done using the <alt-trans> element. In addition, XLIFF provides information for the translator in
order to explain the context or intended usage of a string. This is done with the <note> element:

<trans-unit id=”bigirishcolumn_145” restype=”title” maxwidth=”90” size-unit=”byte”>
 <source xml:lang=”EN”>Database manager</source>

<target xml:lang=”GA”>Feighlí feasa</target>
<alt-trans>
<target xml:lang=”GA”>Gocamán na ngiotán</target>
</alt-trans>

<note>Manager means administration tool - not a person</note>
</trans-unit>

— XML Content Localization and Unicode —

21st International Unicode Conference Dublin, Ireland, May 2002
Page 8

XLIFF addresses the challenge of dialog resizing through the <trans-unit> element’s coord
attributes, which specifies the x, y, cx and cy coordinates of the text for a given element. In practice, for
resizing, tools would require the use of the original source reference file (through the <skl> or skeleton
element - an idea borrowed from OpenTag). However, resizing capability is a function of the translation
tool or whether the localizer can access the equivalent of a runtime development environment. The XLIFF
technical committee is discussing the adoption of standard APIs for rendering to resolve this issue.

As the XLIFF DTD is an open standard, it offers a synergy of a single format exchanged between parties.
For example, XLIFF can be used not only by content publishers but also by customers who can then
modify XLIFF content using commercially available localization tools such as SDLx, Trados Tag Editor,
Star Transit, ForeignDesk, Alchemy Catalyst or any localization tool that allows the user to define which
XML element to localize3.

XML content can be transformed to XLIFF using an XSL transformation or a tool-based conversion
method. For further information about XML internationalization and XLIFF, free XSL templates and
localization utilities for the support of XLIFF, the XLIFF settings files for the localization of XLIFF
documents with SDLx or Trados TagEditor, go to http://www.opentag.com/xliff.htm.

Coverage of the commercially available localization tools support for the various internationalization and
language related features of XML is beyond the scope of this paper. However, for an overview of the
supported features as well as a comprehensive reference of XML internationalization and localization
techniques you should refer to XML Internationalization and Localization by Yves Savourel (ISBN:0-672-
32096-7, Jul-2001).

Summary

We have outlined some of the basic techniques for the internationalization and localization of XML-based
content, and seen how Unicode provides a very powerful basis for the storage of multilingual content,
which when combined with XML’s excellent internationalization support for storage and rendering opens a
whole new range of possibility for the processing of multilingual content.

The merging XLIFF standard offers a very attractive internationalized and scalable proposition for the
deployment and localization of global content. Although a relatively new combination, the use of Unicode
and XML/XLIFF will become the optimal solution for an open, scalable approach to the development of
multilingual content for global deployment. If you are seeking a solution, the area merits serious attention.

References

§ XML Specifications: http://www.w3.org/XML/
§ XLIFF: http://www.oasis -open.org/
§ Internet Assigned Numbers Authority (IANA): http://www.iana.org/
§ XLIFF, tools, templates and more: http://www.opentag.com
§ XML Internationalization and Localization by Yves Savourel (ISBN:0-672-32096-7, Jul-2001)
§ Localization Institute Seminars on XML i18n and l10n: http://www.localizationinstitute.com

3 Localization tools need to be able to parse the <source> element, however in some cases, utilizing the
<alt-trans> element may be a challenge. Check with the tool developer.

— XML Content Localization and Unicode —

21st International Unicode Conference Dublin, Ireland, May 2002
Page 9

Acknowledgements

Thank you to Yves Savourel, Tony Jewtushenko and Paul Quigley for their thoughts and information.

